Establish the identity.
(1 - cos theta)/(1 + cos theta) = (csc theta - cot theta)^2
1 Answers
Best Answer
Given:
(1 - cos theta)/(1 + cos theta) = (csc theta - cot theta)^2
RHS(csc theta - cot theta)^2 rihgtarrow (1)
csc theta = (1)/(sin theta) cot theta = (cos theta)/(sin theta)
and (a -b)^2 = a^2 -2ab + b^2
from (1)(csc theta - cot theta)^2 = ((1)/(sin theta) - (cos theta)/(sin theta))^2
Apply formula
((1)/(sin theta))^2 - 2 ((1)/(sin theta))((cos theta)/(sin theta)) + ((cos theta)/(sin theta))^2
(csc theta - cot theta)^2 = (1)/(sin^2 theta) - (2 cos theta)/(sin^2 theta) + (cos^2 theta)/(sin^2 theta) -> (1)
= (1 - 2 cos theta + cos^2 theta)/(sin^2 theta)
= ((1 - cos theta)^2)/(sin^ 2 theta)
because cos^2 theta + sin^2 theta = 1 -> sin^2 theta = 1 - cos^2 theta
= ((1 - cos theta)(1 - cos theta))/((1 - cos^2 theta)) -> (2)
= ((1 - cos theta)(1 - cos theta))/((1 - cos theta)(1 + cos theta))
= (1 - cos theta)/(1 + cos theta) -> (3)
from (1)(2)(3)
(csc theta - cot theta)^2 = (1)/(sin^2 theta) - (2cos theta)/(sin^2 theta) + (cos^2 theta)/(sin^2 theta)
= ((1 - cos theta)^2)/(1 - cos^2 theta) = (1 - cos theta)/(1 + cos theta)