1 Answers
Best Answer
Step 1
To solve the integral.
Step 2
To solve
int (1)/(cos^(4)x)dx
Using sec x=(1)/(cos x), we have
int (1)/(cos^(4)x)dx=int sec^(4)x dx
=int sec^(2)x(tan^(2)x+1)dx [using, sec^(2)x=tan^(2)x+1]
we substitute
u=tan x
-> (du)/(dx)=sec^(2)x
-> dx=(1)/(sec^(2)x)du
Thus,
int (1)/(cos^(4)x)dx=int (u^(2)+1)du=(u^(3))/(3)+u
Undo substitution u=tan x; we have
int (1)/(cos^(4)x)dx=(tan^(3)x)/(3)+tan x+C
where C is constant of integration.