Find the charge q(t) flowing through a device if the current is: (a) i(t)=3A, q(0)=1C, (b) i(t)=(2t+5) mA, q(0)=0 (c) i(t)=20 cos(10t+pi/6) mu A, q(0)=2 muC (d) i(t)= 10 e^(−30t) sin 40tA, q(0)=0
3 Answers
Best Answer
Step 1
The givens and requirements:
It is required to obtain the charge q(t) flowing through a device, given that the current is:
(a) i(t)=3A, q(0)=1C
(b) i(t)=(2t+5) mA, q(0)=0
(c) i(t)=20 cos(10t+pi/6) mu A, q(0)=2 muC
(d) i(t)= 10 e^(−30t) sin 40tA, q(0)=0
Step 2
Mathematically, the relationship between current ii, charge q, and time t is
i(t) = (dq(t))/(dt)
By integrating both sides of the previous equation, we obtain
q(t) = q(0) + int_(0)^(t) i(tau) d tau
(a)
q(t)=q(0)+int_(0)^(t)i(tau)dtau
=1+int_(0)^(t)3dtau
=1+(3tau)(|)^(t)_(0)
=(1+3t)C
To check:
q(t)=1+3t
=1+3*0
=1C
Best Answer
Step 4
(b)
q(t)=q(0)+int_(0)^(t)i(tau)dtau =0+int_(0)^(t) (2tau+5)dtau =(2(tau^(2))/(2)+5t)mid^(t)_(0) =(t^(2)+5t)mC
To check: q(0)=t^(2)+5t =0^(2)+5*0 =0
Best Answer
Step 5
(c)
q(t)=q(0)+int_(0)^(t)i(tau)dtau
=2+int_(0)^(t) 20cos(10tau+pi/6)dtau
=2+20*(sin(10tau+pi/6))/(10)mid^(t)_(0)
=2+2(sin(10t+pi/6)-(1)/(2))
=(1+2sin(10t+pi/6))mu C
To check:
q(0)=1+2sin(10t+pi/6)
=1+2sin(10*0+pi/6)
=1+2*(1)/(2)
=2mu C
Step 6
(d)
q(t)=q(0)+int_(0)^(t)i(tau)dtau
=0+int_(0)^(t) 10e^(-30tau)sin40tau dtau
In Appendix (C.5) in Page (A-19), we can see that
int(e^(ax)sin bx)dx=(e^(ax))/(a^(2)+b^(2))*(asin bx-b cos bx)
Therefore we can obtain the integration int_(0)^(t) 10e^(-30tau)sin40tau dtau directly without using by-parts integration. Thus use a=-30, b=40, and xarrow tau
q(t)=int_(0)^(t) 10e^(-30tau)sin40tau dtau
=10*(e^(-30tau))/((-30)^(2)+40^(2))*(-30sin 40tau- 40cos 40tau)mid^(t)_(0)
=4*10^(-2)(-3e^(-30tau)sin 40tau - 4e^(-30tau)cos 40tau)mid^(t)_(0)
=4*10^(-2)[(-3e^(-30t)sin 40t - 4e^(-30t)cos 40t)-(0-4)]
=(160-e^(-30t)(120sin 40t+160cos 40t))mC
To check:
q(0)=160-e^(-30t)(120sin40t+160cos40t)
=160-e^(-30*0)(120sin(40*0)+160cos(40*0))
=160-1*(120*0+160*1)
=160-160
=0