Differential equationsFind the derivative. Simplify where possible.
9 months ago
Find the derivative. Simplify where possible. y= sin h(cos h x)
1 Answers
Best Answer
dieantwoordconcertbelgium Staff answered 9 months ago
y= sin h(cos h x) Differentiate (dy)/(dx)= (d[ sin h(cos h x)])/(dx) Use Chain Rule (dy)/(dx)= (d[ sin h(cos h x)])/(d(cos h x))* (d(cos h x))/(dx) Recall that: (d(sin h x))/(dx)= cos h x (d(cos h x))/(dx)= sin h x (dy)/(dx)= (d[ sin h (cos h x)])/(d(cos h x))* (d(cos h x))/(dx) (dy)/(dx)= cos h (cos h x)* (sin h x) (dy)/(dx)= sin h x* cos h(cos h x) Result: (dy)/(dx)= sin h x* cos h(cos h x)
* For every student we do a unique answer