1 Answers
Best Answer
y= sin h(cos h x)
Differentiate
(dy)/(dx)= (d[ sin h(cos h x)])/(dx)
Use Chain Rule
(dy)/(dx)= (d[ sin h(cos h x)])/(d(cos h x))* (d(cos h x))/(dx)
Recall that:
(d(sin h x))/(dx)= cos h x (d(cos h x))/(dx)= sin h x
(dy)/(dx)= (d[ sin h (cos h x)])/(d(cos h x))* (d(cos h x))/(dx)
(dy)/(dx)= cos h (cos h x)* (sin h x)
(dy)/(dx)= sin h x* cos h(cos h x)
Result:
(dy)/(dx)= sin h x* cos h(cos h x)